Isoparametric Polynomials and Sums of Squares
نویسندگان
چکیده
Abstract Hilbert’s 17th problem asks whether every nonnegative polynomial can be a sum of squares rational functions. It has been answered affirmatively by Artin. However, the question as to given is polynomials still central in real algebraic geometry. In this paper, we solve completely for associated with isoparametric polynomials, initiated E. Cartan, which define focal submanifolds corresponding hypersurfaces. Dedicated Professor Chia-Kuei Peng on his 80th birthday
منابع مشابه
Polynomials than Sums of Squares
We investigate the quantitative relationship between nonnegative polynomials and sums of squares of polynomials. We show that if the degree is fixed and the number of variables grows then there are significantly more nonnegative polynomials than sums of squares. More specifically, we take compact bases of the cone of nonnegative polynomials and the cone of sums of squares and derive bounds for ...
متن کاملNonnegative Polynomials and Sums of Squares
A real polynomial in n variables is called nonnegative if it is greater than or equal to 0 at all points in R. It is a central question in real algebraic geometry whether a nonnegative polynomial can be written in a way that makes its nonnegativity apparent, i.e. as a sum of squares of polynomials (or more general objects). Algorithms to obtain such representations, when they are known, have ma...
متن کاملPolynomials and Sums of Squares Sabine Burgdorf
In recent years, much work has been devoted to a systematic study of polynomial identities certifying strict or non-strict positivity of a polynomial f on a basic closed set K ⊂ R. The interest in such identities originates not least from their importance in polynomial optimization. The majority of the important results requires the archimedean condition, which implies that K has to be compact....
متن کاملSparsity in sums of squares of polynomials
Representation of a given nonnegative multivariate polynomial in terms of a sum of squares of polynomials has become an essential subject in recent developments of sums of squares optimization and SDP (semidefinite programming) relaxation of polynomial optimization problems. We disscuss effective methods to obtain a simpler representation of a “sparse” polynomial as a sum of squares of sparse p...
متن کاملApproximating Positive Polynomials Using Sums of Squares
XS f dμ. It is natural to ask if the same is true for any linear functional L : R[X ] → R which is non-negative on MS. This is the Moment Problem for the quadratic module MS. The most interesting case seems to be when S is finite. A sufficient condition for it to be true is that each f ∈ T̃S can be approximated by elements of MS in the sense that there exists an element q ∈ R[X ] such that, for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2022
ISSN: ['1687-0247', '1073-7928']
DOI: https://doi.org/10.1093/imrn/rnac297